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Infectious Diseases Pose
Serious Threat

NATIONAL
SUMMARY DATA

Estimated minimum number of illnesses and
deaths caused by antibiotic resistance*:
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Estimated minimum number of illnesses and
death due to Clostridium difficite (C. difficilte),

a unique bacterial infection that, although

not significantly resistant to the drugs used to
treat it, is directly related to antibiotic use and
resistance:

o #2650,000 e
14,000

WHERE DO INFECTIONS HAPPEN?

Antibiotic Resistance Threats, CDC, 2013.
Antibiotic Resistance Threats, CDC, 2019.
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The Threat of Antibiotic Resistance
in the United States

! Antibiotic resistance—when germs (bacteria, fungi) develop the ability
" X to defeat the antibiotics designed to kill them—is one of the greatest
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Estimated minimum number of illnesses and
deaths caused by antibiotic resistance*: Each year, antibiotic-resistant Clostridioides difficile is
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Estimated minimum number of illnesses and
death due to Clostridium difficite (C. difficilte),

a unique bacterial infection that, although

not significantly resistant to the drugs used to
treat it, is directly related to antibiotic use and
resistance:

New Antibiotic Resistance Threats List
Updated urgent, serious, and concerning threats—totaling 18

NEW:
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deaths Antibiotic resistance remains a significant One Health problem, affecting
B h imals, and the envir Data show infection prevention

and control is saving lives—especially in hospitals—but threats may
undermine this progress without continued aggressive action now.

WHERE DO INFECTIONS HAPPEN?
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*National burden reflects de-duplicated infection and death estimates.

Antibiotic Resistance Threats, CDC, 2013.
Antibiotic Resistance Threats, CDC, 2019.
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Key Stages in Biofilm
Formation

Attachment Growth Maturation Dissemination
Microbial Cells 2-5%
DNA and RNA 1-2%
Polysaccharides 1-2%
Proteins <1-2%
Water 95% Maunders, E.; Welch, M. FEMS Micro. Let. 364,2017.

Fleming, H. Nature Rev. Micro. 8,2010.
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Biofilms Confer Competitive

Advantages

(" Localized Sorption Enzyme retention Cooperation Competition Tolerance and resistance
gradients
Provide habitat Resource  External digestion Synergistic Continuous The biofilm as a fortress
diversity capture system micro-consortia regeneration

Habitat
formation

Matrix

* Architecture

e Stability

* Pores and channels

e Fills and forms the space
between the cells

¢ Localized nutrients and
waste

e Skin formation

e et

Nature Reviews | Microbiology

Fleming, H. Nature Rev. Micro. 8,2016.
Tseng, B. S., et al. Env. Microbiol. 15,2013.
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Nature Reviews | Microbiology

Heterogeneous matrix structure requires alternate strategies for enhanced
penetration and prolonged exposure with lethal antibiotic doses

Fleming, H. Nature Rev. Micro. 8, 2016.
Tseng, B. S, et al. Env. Microbiol. 15,2013.



Dry Antibiotic Pipeline

Antibiotic Class
Antibiotic discovery

e edichancs timasiig @ renCiLLINS @ MACROLIDES CARBAPENEMS
@) TETRACYCLINES | FLUOROQUINOLONES

resistance ¢
identified :
30 years
:;t;:;y . . 1985 since a new class
of antibiotics was
last introduced
Year R Ly RN R RN R RN AR RN RAL |

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Public Health England, 2015.
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Antibiotic Class
Antibiotic discovery

e edichancs timasiig @ renCiLLINS @ MACROLIDES CARBAPENEMS
@) TETRACYCLINES | FLUOROQUINOLONES

Taken together, we need to maximize current therapies using novel delivery routes
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NP Toolbox

e

1. High SA/vol
2. Controlled release
3. High valency



NP Toolbox
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Layer-by-Layer Nanoparticles
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Positive Poly-Amino Acid

Antimicrobial Effects
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Design of Experiment for

Ciprofloxacin Loading



Design of Experiment for

Ciprofloxacin Loading

Note: 1.38 mg cipro added

Active drug loading 50C pH 6 1 mg/mL 53.2% 7.34%

(ciprofloxacin) 65C oH 6 1 mg/mL 29.2% 4.03%

50C pH 7.4 1 mg/mL 10.7% 1.48%

i ? 65C pH 7.4 1 mg/mL 0.94% 0.13%

o 50C pH 6 S5mg/mL  84.8+8.9%*  11.7+1.2%*

HZN@“ g 65C pH 6 5 mg/mL 33.7% 4.65%
50C pH 7.4 5 mg/mL N/A N/A
Ciprofloxacin 65C pH 7.4 5 mg/mL N/A N/A

*n=3 syntheses



Design of Experiment for

Ciprofloxacin Loading

Active drug loading
(ciprofloxacin)

F.

N

|-|2NGJ\l A

Ciprofloxacin

Note: 1.38 mg cipro added

Temperature Exterior [NP] Encapsulation Loading
Solution Efficiency Efficiency
50C pH 6 1 mg/mL 53.2% 7.34%
65C pH 6 1 mg/mL 29.2% 4.03%
50C pH 7.4 1 mg/mL 10.7% 1.48%
65C pH7.4 1 mg/mL 0.94% 0.13%
50C pH 6 5 mg/mL 84.8+8.9%* 11.7+1.2%*
65C pH 6 5 mg/mL 33.7% 4.65%
50C pH7.4 5 mg/mL N/A N/A
65C pH7.4 5 mg/mL N/A N/A

*n=3 syntheses
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Ciprofloxacin Loading

Active drug loading
(ciprofloxacin)

F.

Ciprofloxacin

Note: 1.38 mg cipro added

Temperature Exterior [NP] Encapsulation Loading
Solution Efficiency Efficiency
50C pH 6 1 mg/mL 53.2% 7.34%
65C pH 6 1 mg/mL 29.2% 4.03%
50C pH 7.4 1 mg/mL 10.7% 1.48%
65C pH7.4 1 mg/mL 0.94% 0.13%
50C pH 6 5 mg/mL 84.8+8.9%* 11.7+1.2%*
65C pH 6 5 mg/mL 33.7% 4.65%
50C pH7.4 5 mg/mL N/A N/A
65C pH7.4 5 mg/mL N/A N/A

*n=3 syntheses

Temperature Exterior Encapsulation Loading
Solution Efficiency Efficiency
4 50C pH 6 5 mg/mL 42.0% 16.8%
7 50C pH 6 5 mg/mL 15.3% 10.7%
10 50C pH 6 5 mg/mL N/A N/A




Drug Loaded LbL Scheme
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Drug Loaded LbL Scheme
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Polyelectrolyte Layering
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Particle Efficacy

Nanoparticle Formulation

MIC (ugram/mL)

MBC (ugram/mL)

MBEC (ugram/mL)

Cipro (free)

0.2

0.8

12.5

LipoC 0.1 0.2 25
LipoC/PLK/PLD 0.4 0.8 >25
LipoC/PLK/PLE 0.1 0.2 25
LipoC/PLK/DXS 0.2 0.2,0.2,04 >25
LipoC/PLK/HEP 0.4 0.4 12.5
LipoC/PLK/HA 0.4 0.8 25
LipoC/PLK/CSA 0.2 0.4,0.4,0.8 25
LipoC/PLK/ALG 0.05 0.2 6.25
LipoC/PLK/FUCO 0.1 0.2 12.5




Transwell Penetration of NP
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